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A multiplex polymerase chain reaction assay to simultaneously
distinguish Cryptosporidium species of veterinary and public
health concern in cattle
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A B S T R A C T

Four species of Cryptosporidium are routinely found in cattle: Cryptosporidium parvum,

Cryptosporidium bovis, Cryptosporidium ryanae, and Cryptosporidium andersoni. It is

important to determine the species of Cryptosporidium in infected cattle because C.

parvum is the only serious pathogen for humans as well as cattle. Identification of

Cryptosporidium species and genotypes currently relies on molecular methods such as

polymerase chain reaction (PCR) followed by restriction fragment length polymorphism

(RFLP) or gene sequencing. Incorporation of these techniques in a routine veterinary

diagnostic laboratory is cost prohibitive. As such, their applications are limited primarily

to research and a few public health laboratories. To overcome this problem, a multiplex

PCR assay was developed for simultaneously detecting the 4 species of Cryptosporidium

that commonly infect cattle. This assay specifically identifies Cryptosporidium oocysts

present in cattle feces, improves the detection of mixed infections, reduces the time and

cost relative to current sequencing methods, and further demonstrates the shortcomings

of sequencing as the definitive method for identification when analyzing samples

containing mixed infections.
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1. Introduction

Parasites of the genus Cryptosporidium infect humans
and animals. Eight species of Cryptosporidium and one
additional genotype are infectious to cattle (Santı́n and
Trout, 2008) although only four species are found
routinely; Cryptosporidium parvum, Cryptosporidium bovis,
Cryptosporidium andersoni, and Cryptosporidium ryanae

(previously known as the deer-like genotype) (Fayer
et al., 2006, 2007, 2008; Langkjær et al., 2006; Feng
et al., 2007; Brook et al., 2008; Feltus et al., 2008; Santı́n
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et al., 2004, 2008). Infections with other Cryptosporidium

species such as Cryptosporidium hominis (Smith et al., 2005;
Park et al., 2006; Feng et al., 2007), Cryptosporidium suis

and C. suis-like (Fayer et al., 2006; Geurden et al., 2006,
2007; Langkjær et al., 2006), and Cryptosporidium felis

(Bornay-Llinares et al., 1999), along with the Cryptospor-

idium pig genotype II (Langkjær et al., 2006), have been
reported only rarely. Infection with Cryptosporidium canis

has been demonstrated under experimentally induced
conditions (Fayer et al., 2001) but has not yet been
identified in a natural setting.

A relationship exists between the age of the cattle and
the species of Cryptosporidium. Most Cryptosporidium

infections in pre-weaned calves are due to C. parvum

and those in post-weaned calves are due to C. bovis and C.
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http://dx.doi.org/10.1016/j.vetpar.2009.07.039


Table 1

Number of samples examined and number of samples positive using the different sets of primers.

Cryptosporidium species/genotype

identified by PCR/SEQ of

a fragment of the SSU rDNA gene

Number of

samples

examined

Number of positive samples using different sets of primersa

1010/1011

(C. parvum and C. hominis)

1005/1008 (C. bovis and C. ryanae) 1018/1019

(C. andersoni)

C. parvum 18 18 (C. parvum) 0 0

C. bovis 16 5 (C. parvum) 16 (15 C. bovis and 1 mixed infection

with C. bovis/C. ryanae)

0

C. ryanae 19 9 (C. parvum) 19 (8 C. ryanae and 11 mixed infections

with C. bovis/C. ryanae)

0

C. andersoni 8 0 3 (2 C. bovis and 1 C. ryanae) 8 (C. andersoni)

C. canis 3 0 0 0

C. felis 5 0 0 0

C. hominis 3 3 (C. hominis) 0 0

C. suis 1 0 0 0

Pig genotype II 4 0 0 0
a In parenthesis: Cryptosporidium species identified after sequencing the PCR product.
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ryanae. C. andersoni is most often found in cattle over 1 year
of age (Santı́n et al., 2004, 2008; Fayer et al., 2006, 2007;
Langkjær et al., 2006; Feng et al., 2007). It is very important
from a public health perspective to identify the species of
Cryptosporidium present in infected cattle because of the
species that commonly infect cattle, only C. parvum is
considered zoonotic. Identification of Cryptosporidium

species relies on molecular methods that include poly-
merase chain reaction (PCR) followed by restriction
fragment length polymorphism (RFLP), or gene sequen-
cing. Because most PCR methods that genotype Cryptos-

poridium make use of primers that are conserved among all
Cryptosporidium species, only the dominant species in a
specimen is routinely identified. Thus, infections with
multiple species become difficult to diagnose and minor
species frequently go undetected (Xiao and Ryan, 2008).
This undermines our ability to understand the epidemiol-
ogy of cryptosporidiosis in cattle.

There have been attempts to develop multiplex PCR
tests for differentiating subsets of Cryptosporidium spe-
cies. One such test simultaneously delineates among C.

parvum, Cryptosporidium wrairi, Cryptosporidium baileyi

and Cryptosporidium muris (Patel et al., 1999). Using this
assay, C. parvum and C. wrairi generate identical fragments
from the small subunit rDNA (SSU rDNA). As such, a
follow-up PCR-RLFP targeting the outer wall protein
(COWP) is required to distinguish among them (Patel
et al., 1999). Also, a nested multiplex PCR amplifying the
heat shock protein 70 was developed for detecting the 4
human Cryptosporidium species, C. parvum, C. hominis, C.

canis, and C. felis (Lindergard et al., 2003); however, no
multiplex studies have ever targeted Cryptosporidium

species commonly found in cattle. Inasmuch as epide-
miological studies are frequently directed at cows as a key
source for human infections, a multiplex PCR test was
developed to rapidly detect and accurately delineate
multiple Cryptosporidium species in cattle by examining
oocyst DNA. This test is based on simultaneously
amplifying different sized fragments of the actin gene
in the 4 most common species of Cryptosporidium found in
cattle, followed by amplicon detection on agarose gels
thereby eliminating the need to sequence the PCR
product.
2. Materials and methods

2.1. Sources of specimens, oocysts purification, and DNA

extraction

Fecal samples containing oocysts of C. parvum, C. bovis,
C. ryanae, C. andersoni, C. hominis, C. canis, C. suis, C. felis, and
the Cryptosporidium pig genotype II, as defined by
sequencing PCR-amplified SSU rDNA fragments, were
obtained from infected animals and humans (Table 1).
Oocysts were concentrated from feces by CsCl centrifuga-
tion as previously described (Fayer et al., 2000; Santı́n
et al., 2004). Total DNA was extracted from each CsCl-
cleaned fecal sample using a modification of the DNeasy
Tissue Kit (Qiagen, Valencia, California). A total of 50 ml of
purified oocysts were suspended in 180 ml of ATL buffer
(supplied by the manufacturer) and vortexed. To this
suspension, 20 ml of proteinase K (20 mg/ml) was added
and the mixture incubated overnight at 55 8C. The next
day, 200 ml of AL buffer was added and purification
proceeded as per manufacturer’s instructions. The nucleic
acids were eluted in 100 ml of AE buffer.

2.2. Gene amplification and sequencing

Nucleotide sequence analyses of the SSU rDNA followed
by alignment with known Cryptosporidium sequences were
used to validate the identity of the oocysts. A two-step
nested PCR protocol was used to amplify a fragment of the
SSU rRNA gene of Cryptosporidium (�830 bp) using primers
and PCR conditions previously described (Xiao et al., 1999;
Santı́n et al., 2004).

To conduct the multiplex assay, a nested PCR was
required. First, a single set of degenerate primers was used
to amplify a fragment of the actin gene from homogeneous
preparations of the 4 most common species of Cryptospor-

idium that infect cattle; C. parvum, C. bovis, C. ryanae, and C.

andersoni. These primers (forward 50-ATGRGWGAAGAAG-
WARYWCAAGC and reverse 50-AGAARCAYTTTCTGTGKA-
CAAT) produced a single PCR product approximately
1095 bp in length (Sulaiman et al., 2002). The primary
PCR mixture contained 1� PCR buffer, 3 mM MgCl2,
0.2 mM dNTP, 2.5 U Taq (Qbiogene, Irvine, CA), 2.5 ml



Fig. 1. Locations of primers used for nested multiplex PCR. Sequences above are derived from the following accession numbers: M86241 (C. parvum),

AF382352 (C. andersoni), AY741307 (C. bovis), and EU410345 (C. ryanae). Nucleotide numbering is based upon the complete nucleotide sequence of the C.

parvum actin gene. Locations of the forward and reverse primers corresponding to each species are underlined and highlighted in bold. Primer sets were

defined as 1010/1011 (C. parvum and C. hominis); 1005/1008 (C. bovis and C. ryanae) and; 1018/1019 (C. andersoni). The first bold primer for each species is

designated as the forward primer, and all reverse primers are the reverse complement of those shown above. ‘‘Dots’’ indicate conserved nucleotides based

upon the C. parvum sequence. First round PCR was performed with forward and reverse degenerate primers as defined in Section 2. These primers bind at

positions 322 and 1429, respectively, and are not shown in the sequence above.
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BSA (0.1 g/10 ml), 1 mM of each primer, and 5 ml of the
template DNA in a 50 ml reaction. A total of 35 cycles, each
consisting of 94 8C for 45 s, 50 8C for 45 s, and 72 8C for
1 min, was performed; an initial pre-heat step at 94 8C for
5 min and a final extension step at 72 8C for 10 min were
also included.

For the nested PCR, three sets of specific primers were
designed based upon multiple sequence alignment of the
actin genes from each species. The locations of the primers
used for the multiplex are shown in Fig. 1; the first primer
set 1010 (50-AATCGTGAAAGAATGACTCAAATA) 1011 (50-
CTGGTAGTTCATATGTCTTCTCTAA) amplifies a 400 bp frag-
ment from C. parvum; and the second primer set 1018 (50-
GCTGTGTTTTCCCATCAATTGTACGA) and 1019 (50-GCATA-
CAAAGACAGAACAGCTTGTATATTT) amplifies a 350 bp
fragment of C. andersoni; and the third primer set 1005
(50-GAAGTCTCAGGAATCTTCAGAAATT) and 1008 (50-
TAATCTTCATTGTAGAAGGTGCTTAT) amplifies a 300 bp
fragment from both C. bovis and C. ryanae; The third base
(bold) from the 30 end of primer 1008 was deliberately
changed from ‘‘A’’ to ‘‘T’’ to destabilize non-specific primer
binding to DNA from species other than C. bovis and C.

ryanae. The nested PCR mixture contained 1� PCR buffer,
1.5 mM MgCl2, 0.2 mM dNTP, 2.5 U Taq (Qbiogene, Irvine,
CA), 2.5 ml BSA (0.1 g/10 ml), 1 mM of each primer, and 2 ml
of the primary PCR reaction in a 50 ml reaction. A total of 40
cycles, each consisting of 95 8C for 30 s, 60 8C for 30 s, and
72 8C for 2 min, was performed; an initial pre-heat step at
95 8C for 2 min and a final extension step at 72 8C for 7 min
were also included.

PCR products were separated on 2% NuSieve GTC
agarose gels (FMC BioProducts, Rockland, ME) and
visualized after ethidium bromide staining. All PCR
products were purified using Exo-SAP-ITTM (USB Corpora-
tion, Cleveland, OH), and sequenced in both directions on
an ABI3100 Genetic Analyzer (Applied Biosystems, Foster
City, CA) using the actin nested PCR primers and Big DyeTM

Terminator v3.1 chemistries (Applied Biosystems, Foster
City, CA). Sequence chromatograms of each strand were
aligned and examined with Lasergene software (DNASTAR,
Inc., Madison, WI).

2.3. Experimental design

The amplification specificities of the PCR primers
putatively identified as species specific were validated
on DNAs from known homogeneous samples of C. parvum,
C. bovis/C. ryanae, and C. andersoni both individually and in
all possible DNA combinations to mimic naturally derived
samples. The specificity of the primers was validated by
sequencing all PCR amplicons generated during the
experiment to corroborate that the correct Cryptosporidium

species was being amplified and that no non-specific
amplification was taking place (data not shown). Compar-
able amounts of DNA from each species were included in
all mixtures prior to diluting to 6 ml. Concentrations of
DNA could not be spectrophotometrically quantitated for
parasite material because of host and environmental DNAs
which routinely contaminate the samples. As such, PCR
using parasite-conserved rDNA primers was used to
normalize the amounts of each parasite DNA prior to
mixing. To normalize the DNA concentrations, serial
dilutions of DNA from each species were PCR amplified
under identical conditions where the chosen cycle number
was within the linear range of the amplification curve for
all dilutions. PCR products were separated by agarose gel
electrophoresis and stained with ethidium bromide. The
gels were scanned and band signal intensities compared.
Stock DNA samples were diluted to approximate the same
DNA level in each sample (species). The above experiment
was then repeated after the DNAs were diluted to validate
the normalized stock DNA samples. DNA trial samples
were prepared as follow: samples 1–3 contained 2 ml of C.

parvum, C. bovis, and C. andersoni, respectively, plus 4 ml of
dH2O to obtain a final volume of 6 ml; sample 4 contained
2 ml each of C. parvum and C. bovis, plus 2 ml of water to
obtain a final volume of 6 ml; sample 5 contained 2 ml each
of C. parvum and C. andersoni, plus 2 ml of water to; sample
6 contained 2 ml each of C. bovis and C. andersoni, plus 2 ml
of water to obtain a final volume of 6 ml; and sample 7
contained 2 ml each of C. parvum, C. bovis, and C. andersoni

to obtain a final volume of 6 ml. All 6 ml samples were
subjected to the primary PCR followed by the nested
multiplex PCR.

Once validated on control samples, the PCR assay was
used to examine 61 DNA samples obtained from naturally
infected cattle. The results obtained directly from agarose
gels and from sequencing each band of the multiplex PCR
were compared to infection data obtained by benchmark
sequencing the SSU rDNA of each environmentally derived
sample followed by alignment with published sequences
(Table 1). In addition, 16 samples containing DNA from 4
other Cryptosporidium species (C. canis, C. felis, C. hominis, C.

suis) and one genotype (pig genotype II) not routinely
found in cattle were tested to validate primer specificity
(Table 1).

To determine the sensitivity of the methods used to
detect Cryptosporidium oocysts in the present study,
Cryptosporidium negative bovine feces were obtained. Six
replicate 15 g fecal specimens were each spiked with
oocysts of C. parvum at the rate of 10, 100, and
1000 oocysts/g and subjected to the same methods of
concentration and molecular detection as described above.

3. Results

In controlled experiments, normalized amounts of DNA
from each species were mixed in all possible combinations
to validate the multiplex test and the choice of primers
(Fig. 1). The expected size amplicons were generated from
each pure Cryptosporidium species DNA (lanes 1–3) as well
as all possible combinations of these DNAs (lanes 4–7)
(Fig. 2). No primer cross-reactivity was observed among
the cattle species tested.

In the 61 DNA samples obtained from naturally infected
cattle, the targeted amplicons for all 4 cattle species (C.

parvum, C. andersoni, C. bovis, or C. ryanae) were observed
and in various combinations. The presence of C. parvum

and C. andersoni resulted in amplicon sizes of 400 bp and
350 bp, respectively. The presence of C. bovis or C. ryanae

resulted in a single amplicon of 300 bp. Also, an amplicon
of 400 bp was obtained when the C. parvum primer set



Fig. 2. Multiplex PCR amplification of C. parvum, C. bovis, and C. andersoni

observed on 2% agarose gels stained with ethidium bromide. Lane L, 100-

bp DNA ladder; lane 1, C. parvum; lane 2, C. bovis; lane 3, C. andersoni; lane

4, C. parvum and C. bovis; lane 5, C. parvum and C. andersoni; lane 6, C. bovis

and C. andersoni; lane 7, C. parvum, C. bovis, and C. andersoni; lane C,

negative control. The white arrow indicates the 500 bp marker of the

100 bp DNA ladder.
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1010/1011 was used to amplify 3 DNA samples identified
previously as C. hominis by SSU rDNA sequencing. All 3
primer sets failed to amplify DNA from C. canis, C. felis, C.

suis, and the Cryptosporidium pig genotype II.
All PCR products were sequenced for confirmation. In

every case, the Cryptosporidium species identified by the
multiplex PCR assay corresponded with the species
defined by SSU rRNA gene sequencing; however, the
multiplex PCR also identified mixed infections of C.

parvum/C. bovis, C. parvum/C. ryanae, C. andersoni/C. bovis,
and C. andersoni/C. ryanae in 5, 9, 2, and 1 of the samples
examined, respectively (Table 1). These mixed infections
were missed by SSU rDNA sequencing (Table 1). Further-
more, the 12 mixed infections containing both C. bovis and
C. ryanae were confirmed by multiple peaks in key
locations in the sequence chromatograms (i.e., the pre-
sence of two nucleotides at the same position) of the actin
gene fragment (data not shown).

Of the 6 fecal specimens each spiked at 10, 100, and
1000 C. parvum oocysts per gram, 66%, 100%, and 100%
were found positive by the multiplex PCR, respectively
(data not shown).

4. Discussion

For identification of Cryptosporidium species and
genotypes, SSU rRNA gene sequencing is the most
commonly used method. This technique as well as PCR-
RFLP are very sensitive and can detect a wide range of
Cryptosporidium species and genotypes (Xiao and Ryan,
2008); however, these methods have not been found useful
in detecting mixed infections because the dominant
species or genotype in the specimen becomes preferen-
tially amplified by the PCR when only genus-specific
primers are used (Cama et al., 2006). To develop the
multiplex PCR assay, the actin gene was targeted because it
provided more sequence variation for primer design.

The multiplex PCR assay developed herein generated
the predicted 3 different sized amplicons for C. parvum, C.

andersoni, and C. bovis/C. ryanae thereby identifying the
most common species of Cryptosporidium that infect cattle.
Furthermore, the multiplex PCR assay was able to detect
mixed infections that were missed by conventional
sequencing of the SSU rRNA gene. Preliminary data on
assay sensitivity suggest that DNA extracted from 10
oocysts in feces was insufficient to generate consistent
detection. However, 100 oocysts in feces reproducibly gave
positive results by multiplex PCR. Detection efficiency in
the range of 10–100 oocysts was not determined. These
data confirm the results of others advocating the
inadequacies of sequencing only (Cama et al., 2006), and
suggest that mixed infections in cattle may be more
prevalent than originally believed.

It is crucial to differentiate among Cryptosporidium

species infecting cattle because only C. parvum is zoonotic
where C. bovis, C. andersoni, and C. ryanae are cattle adapted
(Lindsay et al., 2000; Fayer et al., 2005, 2008; Santı́n and
Trout, 2008). Results presented here indicate that 44% (14/
32) of the C. parvum-infected animals were missed by
conventional SSU rDNA sequencing. Thus, the multiplex
PCR is a better method for differentiating between
zoonotic and non-zoonotic species of Cryptosporidium of
cattle and is critical for determining the risk to public
health. Furthermore, the amplification of C. hominis using
the C. parvum primer set 1010/1011 can be considered an
added advantage because the presence of the 400 bp
amplicon will indicate that one of the two most common
species responsible for human cryptosporidiosis, C. parvum

and C. hominis, is present in a particular sample.
With regard to animal health, C. parvum infection

causes diarrhea in young calves (Fayer et al., 1998; de Graaf
et al., 1999) and C. andersoni infection causes reduced milk
production in mature cows (Esteban and Anderson, 1995);
however, neither disease nor changes in host physiology
have been linked to animals infected with C. bovis or C.

ryanae (Fayer et al., 2005, 2008). As such, there is no
practical need to differentiate between these species at this
time. In conclusion, the advantages of the multiplex PCR
test described in this study are its ability to: (1) identify
mixed infections which are critical to understanding
cryptosporidiosis epidemiology; (2) differentiate the
zoonotic pathogen C. parvum from the other 3 common
species of Cryptosporidium in cattle without further
analysis, and; (3) identify the presence of C. parvum as a
minor component of Cryptosporidium-infected animals
that is often missed using conventional sequencing
methodologies.
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